888-501-5580 [email protected]
IoT Medical Devices Security Vulnerabilities on Wi-Fi Networks

IoT Medical Devices Security Vulnerabilities on Wi-Fi Networks

IoT Medical Devices Security Vulnerabilities  on Wi-Fi Networks

IoT medical devices security vulnerabilities affects many different types of in-hospital equipment including diagnostic equipment (e.g., MRI (Magnetic Resonance Imaging) machines and CT (Computerized axial Tomography) scanners), therapeutic equipment (e.g., infusion pumps and medical lasers) life support equipment (e.g., heart support machines), internet-connected devices for monitoring patients vital signs (e.g., thermometers, glucometers, blood pressure cuffs, wearables), as well as novel, intelligent and disruptive devices which can keep track of medication schedules (e.g., GlowCap outlets and AdhereTech wireless pills).

The Internet-of-Things (IoT) is gradually realizing a radical transformation of healthcare services based on the deployment of numerous medical devices, which already represent a considerable segment of the billions of internet-connected devices that are nowadays available.

These devices are used in conjunction with mobile terminals (e.g., tablet computers, smart phones) which enable health professionals both to configure them and to visualize their data. Moreover, several IoT applications integrate RFID tags, as a means of uniquely identifying and associating with each other devices, patients, doctors, drugs, prescriptions and other artifacts engaging in the care service provisioning process. While several of the above listed devices can be deployed in the patients’ homes, the majority of them are deployed in the hospital environment.

In principle, IoT technologies enable the processing of data and the orchestration of services from all these devices in order to facilitate health professionals to access accurate and timely information about the patients’ status, but also to configure disease management processes for prognosis, diagnosis and treatment. Beyond disease management, the deployment of IoT medical devices security in the hospital can be also used to boost the efficiency of hospital operations.

As a prominent example, the continuous monitoring of IoT medical devices security can serve as basis for reducing their downtime. Likewise, devices emit notifications that can trigger proactive maintenance and replenishment of supplies. Furthermore, information from medical devices can be exploited in order to optimize resources utilization and patient scheduling. Based on these processes, healthcare will become a setting that will annually contribute over $1 trillion to IoT’s business value by 2030, as projected by a recent report of McKinsey Global Institute.

IoT Medical Devices Security Risks

The expanded use of IoT medical devices in hospitals raises serious privacy and security challenges, given the proclaimed and widespread vulnerabilities of wireless devices. IoT medical devices security vulnerabilities has always been a concern for applications, but in the case of healthcare it is a matter of life and death. Indeed, beyond compromising patient’s data confidentiality, security vulnerabilities can have life-threatening implications, as IoT devices are used to control medication or even to drive surgical interventions and other therapeutic processes.

Since commands to several devices are transmitted wirelessly, hackers can invade the wireless network in order to gain control over devices and transmit unauthorized commands with fatal results. For instance, a malicious attack against an insulin pump can lead to a wrong dose to a diabetes patient. As another example, the hacking of an electrical cardioversion device could instigate an unnecessary shock to a patient.

There is a host of different IoT medical devices security vulnerabilities  easily include a non exhaustive list of common attacks includes:

  • Password hacking: It is quite common for medical devices to be protected by weak passwords that can be hacked. This is the case when the built-in passwords provided by the device vendors are maintained.

Hackers can easily discover such passwords in order to gain access to device configuration information. Moreover, in several cases, hackers are also able to control the device and use it to launch more advanced attacks.

Poor Security Patching: Some medical devices are poorly patched, either because some patch has not yet been deployed on the device or because the device runs an “old” operating system (e.g., an older version of Windows or Linux). Poorly patched devices are vulnerable to malware and other attacks, which makes them an easy target for hackers.

Wi-Fi: The weak link in IoT Medical Devices Security Vulnerabilities 

Denial of service attacks: Medical devices are usually lightweight and resource constrained, which makes them susceptible to denial of service attacks. The transmission of simultaneous requests to the device can cause it to stop, disconnect from the network or even become out of order.

 Unencrypted data transmission: It’s quite usual for attackers to monitor the network in order to eavesdrop and steal passwords. The transmission of unencrypted data can therefore ease their efforts to gain access to the device in order either to extract information or even exploit the device for transmitting malicious commands.

IoT medical devices security is serious business, as most of the medical devices are Wi-Fi enabled, which renders Wi-Fi the technology that carries the vast majority of the traffic that is exchanged between medical devices. However, Wi-Fi networks are conspicuously associated with IoT Medical Devices security vulnerabilities , which make them the weak link.  For example, the WEP (Wireless Encryption Password) mechanisms that empower Wi-Fi security are weak, as WEP passwords can be easily stolen.

This can accordingly enable hackers to launch attacks based on the sniffing of unencrypted traffic. In order to alleviate WEP problems, IEEE and the Wi-Fi community have specified and implemented Wi-Fi standards and protocols (e.g., WPA2, WPA2-PSK (TKIP/AES)) with much stronger encryption capabilities. Nevertheless, not all IoT medical devices security vendors provide proper support for these standards, putting the operation of devices and their interoperability with others at risk.

In recent years, special emphasis has been given in producing standards and best practices for securing wireless medical devices, on the basis of the implementation of appropriate authentication and encryption mechanisms for IoT medical devices security.

This has led to the specification of IEEE 802.1X, which is a ratified IEEE standard for network access control. 802.1X is flexible and supports a variety of Extensible Authentication Protocol (EAP), including EAP with Transport Layer Security (EAP-TLS) and Advanced Encryption Standard (AES) encryption. The latter provides two-way authentication between devices based on the installation and use of X.509 certificates.

IoT medical devices security challenges

Alleviating IoT Medical Devices Security Vulnerabilities 

 

The vision of IoT enabled hospital care cannot be realized without very strong security. CIOs and IT managers of healthcare services providers cannot therefore afford to treat security investments with caution, in an effort to reduce budgets which could ignoring low-probability risks.

Rather, they should adopt a holistic approach to IoT medical devices security and their operation, spanning technology, processes and security policy aspects.

At the technological forefront, latest Wi-Fi technologies offering strong security and encryption features should be deployed and tested.

This may involve purchasing technologically advanced equipment and testing it in terms of IoT medical devices security features, configuration problems, wireless stability and more. There is also a need for medical engineering processes in order to ensure that IoT-enabled process provide high security levels.

IoT medical devices security vulnerabilities is particularly important in the case of the trending BYOD (Bring Your Own Device) services, which involve the deployment and use of third-party devices as part of healthcare processes.

Moreover, as part of the holistic security approach, hospitals must tweak their security policies in order to keep up with IoT-related technological developments.

The right technology, the proper processes and an IoT-aligned security policy provide a sound basis for hospitals to adhere to security and privacy regulations, to avoid relevant liabilities and ultimate to maximize returns on their IoT investments.

Next Generation of IoT Medical Devices Cyber Security Recruitment

The NextGen Executive Search cyber security team is intimately familiar with the newest IoT medical devices security over WiFi networks. We identify and develop candidates so that in the shortlist we deliver to clients those who not only meet, but exceed your expectations. We target only “A players” who produce 8 to 10 times more than “B players, backed by an industry leading 12 to 36 month replacement guarantee. For more information on recruiting cyber security professionals for in-hospital medical devices using ioT device and data network connections, speak with the cyber security practice lead, click on the image below.

 

Blockchain Technology Securing IoT Infrastructure?

Blockchain Technology Securing IoT Infrastructure?

Blockchain Technology Securing IoT Infrastructure?

The growth of the Internet-of-Things (IoT) paradigm begs the question if blockchain technology securing IoT infrastructure properly or not?  Currently propelled by an unprecedented increase in the number of internet-connected devices. Even though the Cisco’s 2011 projection about 50 billion devices in 2020 is not ending up being very accurate, more recent estimates by Gartner and IHS confirm the tremendous growth of the number of IoT devices.

Understanding Blockchain Technology Securing IoT infrastructure

The need to support billions of devices in the years to come is inevitably pushing IoT technologies to their limits. Despite significant progress in blockchain technology, the specification and implementation of IoT technologies for identification, discovery, data exchange, analytics and security, the future scale of IoT infrastructure and services is creating new challenges and ask for new paradigms.As a prominent example, IoT security is usually based on centralized models, which are centered round dedicated clusters or clouds that undertake to provide authentication, authorization and encryption services for IoT transactions. Such centralized models are nowadays providing satisfactory protection against adversaries and security threats.

Nevertheless, their scalability towards handling millions of IoT nodes and billions of transactions between them can be questioned, given also recent IoT-related security attacks which have manifested the vulnerabilities of existing infrastructures and illustrated the scale of the potential damage.

blockchain technology securing IoT data and devices

In particular, back in October 2016, a large scale Distributed Denial of Service (DDoS) attack took place, which affected prominent Internet sites such as Twitter, Amazon, Spotify, Netflix and Reddit. The attack exploited vulnerabilities in IoT devices in order to target the infrastructures of dyn.com, a global infrastructure and operations provider, which serves major Internet Sites.

The incident is indicative of the need for new IoT security paradigms, which are less susceptible to attacks by distributed devices and more resilient in terms of the authentication and authorization of devices. In quest for novel, decentralized security paradigms, the IoT community is increasingly paying attention to blockchain technology, which provides an infinitely scalable distributed ledger for logging peer to peer transactions between distrusted computing nodes and devices.

Most of the people that are aware of the paradigm to blockchain technology securing IoT perceive it as the main building block underpinning cryptocurrencies such as the well-known BitCoin. Indeed, the main characteristic of Bitcoin transactions is that they are not authenticated by a Trusted Third Party (TTP), as is the case with conventional banking transactions. In the case of the BitCoin, there is no central entity keeping track of the ledger of interactions between the different parties as a means of ensuring the validity of the transactions between them. Instead, any transaction occurring between two parties (e.g., A paying 1 Bitcoin to B) is kept in a distributed ledger, which is maintained by all participants of the BitCoin network and which is empowered by blockchain technology. Among the merits of this distributed ledger approach is that it is very scalable and more robust when compared to traditional centralized infrastructure.

This is due to the fact that the validation of transactions is computationally distributed across multiple nodes, as well as due to the fact that the validation requires the consensus (“majority vote”) of the whole network of communicating parties, instead of relying on a centralized entity. In this way, it is practically impossible for an adversary to attack the network, since this would require attacking the majority of nodes instead of one or a few parties.

The scalability and resilience properties of the blockchain approach have given rise to its applications in other areas such as electronic voting or IoT transactions. The principle remains the same: Transactions are logged in the distributed ledger and validated based on the majority of nodes, even though in the case of voting and other transactions Bitcoin units are replaced by votes or credits. This results in a trustful and resilient infrastructure, which does not have a single point of failure.

Based on the above principle, blockchain is deployed as an element of IoT infrastructures and services, which signifies a shift from a centralized brokerage model, to a fully distributed mesh network that ensures security, reliability and trustworthiness. Blockchain technology securing IoT infrastructure facilitates devices to authenticate themselves as part of their peer-to-peer interactions, while at the same time increasing the resilience of their interactions against malicious adversaries. Moreover, this can be done in a scalable way, which scales up to the billions of devices and trillions of interactions that will be happening in the coming years.

Cases based on IoT Blockchain Technology Securing IoT

blockchain technology securing IoT systems

The development of secure mesh IoT networks based on blockchain technology is no longer a theoretical concept. During the last couple of years several companies (including high-tech startups) have been using blockchain technology in order to offer novel IoT products and services. The most prominent implementations concern the area of supply chain management. For example, modum.io is applying blockchain in the pharmaceuticals supply chain, as means of ensuring drug safety.

The company’s service uses the blockchain technology in order to log all transactions of a drug’s lifecycle, starting from its manufacturing to its actual use by a health professional or patient. Recently, the retail giant Wal-Mart Stores Inc. has announced a food products track and trace pilot based on blockchain technology. The pilot will document all the steps associated with tracking and tracing of pork, from the farm where the food is grown, to the supermarket floor where it is shipped. This pilot is a first of a kind effort to validate the merits of the blockchain outside the scope of the financial services industry.

Beyond supply chain implementations, novel products are expected to emerge in the areas of connected vehicles, white appliances and more. Several of the applications are expected to benefit from blockchain’s ability to facilitate the implementation of monetization schemes for the interaction between devices. In particular, as part of blockchain implementations, sensors and other IoT devices can be granted micropayments in exchange of their data.

The concept has already been implemented by company tilepay, which enables trading of data produced by IoT devices in a secure on-line marketplace. At the same time, cloud-based infrastructures enabling developers to create novel blockchain applications are emerging. As prominent example Microsoft is providing a Blockchain-as-a-Service (BaaS) infrastructure as part of its Azure suite.

Overall, blockchain technology is a promising paradigm for securing the future IoT infrastructures. Early implementations are only scratching the surface of blockchain’s potential. We expect to see more and more innovative products in the next few years.

In this direction, several challenges need also to be addressed, such as the customization of consensus (i.e. “majority-voting”) models for IoT transactions, as well as efficient ways for carrying out the computationally intensive process of transaction verification. Solutions to these challenges will certainly boost the rapid uptake of this technology in the IoT technology landscape.

 

Future Cell Site Towers for IoT Data, Broadband, and Leasing

Future Cell Site Towers for IoT Data, Broadband, and Leasing

Future Cell Site Towers for IoT Data, Broadband, and Leasing

 

As demands on the Internet continue to grow, an in-depth look at the future cell site towers needs to be addressed, especially with IoT that sees homes become increasingly “smart” with the demand for transmission equipment continuing to grow. How will this growth happen? Where will transmission towers be located? What are the cost factors and are any innovations likely to come online soon? Are cell towers even going to be needed?

The base for everything on the Internet is power. Something must generate the electricity for transmission, whether through fiber optic lines or radio waves. How much power is not even a question as engineers know exactly how much it takes to send any signal any distance through any medium.

The power needs for individual devices, think smartphone, smart thermostat and such, is tiny. However, the power demands for several of these devices increase. Bump that number to the hundreds and thousands and power demands jump a lot. The future cell site towers is that they are going to need a LOT of power to handle that volume of data traffic.

Simply put, a pocket-sized battery will not deliver the volts and amperage needed to receive and transmit signals from more than 1,000 devices. “Cell towers will become obsolete only when Chevy Suburban’s and Ford F-150’s can drive down the Interstate at 70 MPH fully powered by solar panels made in the USA.  The demand for bandwidth is growing faster than the carriers can sell smart phones. Even if they came up with some amazing technology that could replace cell towers, it would easily take 10 years or more to implement.”   Some may point to signal boosters to handle the need for more and stronger transmissions.

  • More Power

Signal boosters require more power. That must come from somewhere. The demand on the already-stressed power grid will just get worse. Individually, the power draw may be minuscule. Added together, it becomes a real issue. A straw broke the camel’s back.   Battery advances over the past 30 years are huge, but battery output is still directly tied to the size of the battery. You can’t run a golf cart on a dozen D-cell flashlight batteries.

  • FCC Regulation

The Federal Communications Commission controls radio wave broadcasts including that done by wireless devices. It regulates signal boosters now. “Malfunctioning, poorly designed, or improperly installed signal boosters can interfere with wireless networks and result in dropped or blocked calls, including emergency and 911 calls,” says an FCC Consumer Guide to signal boosters.  As more and more devices go wireless, the chances for interference are going to grow.

Future Cell Site Towers in Aesthetic Landscapes

The demand for towers is not going away. Vertical Consultants tracks cell tower agreements and reports the industry is growing. “So again, if cell towers were about to become obsolete, why would the industry leaders be investing billions of dollars to acquire the rights to your cell tower?  The answer to this situation is that technology is nowhere near close to finding an economic and reliable replacement for the future cell site towers, and your individual site lease has value to the acquiring company!” .

However, the look and location of these towers is changing. So, a better description for a cell tower is “transmission hub,” or hub for short. Increasingly municipalities are rejecting the look of giant antenna arrays.  The industry is responding. “Cell tower companies like Crown Castle are installing small cells for carriers’ use on light poles, on top of shopping centers and other places where they fit in with the urban scenery. In 2010, Crown Castle acquired New Path Networks, which built the nine-antenna medical center system.

Where and what these smaller hubs are might surprise you. Twisted Sifter has a list of these different types of antenna hubs.  These hubs still require space, which means buying or leasing that space. A smaller footprint likely will translate into smaller lease payments, but more hubs also mean more leases. Savvy negotiators are going to win this one.

Future Cell Site Towers gets Creative

The demands on the wireless networks and high-speed broadband Internet are only going to grow. Consumers have already shown they are willing to pay for the service. Creative thinking will dominate the industry as it moves forward.

ISPs must step up their transmission capabilities. The tower manufacturers are already headed in the right direction with smaller hubs that are not eyesores. With the increase in transmission/reception sites, the demand for real estate to plant these hubs is also going to grow.

Future cell site towers are small hubs, more hubs and hidden hubs are the demands. Companies that make these hubs are in the driver’s seat. They determine the power needs and appearance. Location is going to be set by ISPs or cell companies and real estate owners.

future cell site towers in the city

Need Help with Staffing for a Tower, Leasing,  Site Acquisition, or Engineering Services deployment vendor?

Check out the wireless recruitment case studies and client testimonials to reveal that NextGen has almost three decades of recruiting sales, business development, RF network and optimization engineers, cell site site construction and site acquisition professionals and network engineering deployment and testing vendors.    Click the image below to learn more about the retained and engagement recruitment services we offer.

 

Embedded Wireless Devices and IoT Security Vulnerabilities

Embedded Wireless Devices and IoT Security Vulnerabilities

Embedded Wireless Devices and IoT Security Vulnerabilities

 

Embedded Wireless devicesonce thought to be too small to include their own security, undergo a more thorough analysis beginning with firmware testing. The software inside the chip is just as important as the application controlling it. Both need to be tested for security and quality. Some of the early IoT botnets have leveraged vulnerabilities and features within the device itself.

Embedded wireless devices really are one of the most common devices on the Internet, and the security of these devices is terrible.” Those were the words of network security expert H.D. Moore, the developer of the penetration testing software Metasploit Framework, when discussing an illicit attempt to survey the entire internet.

Consumer Based Embedded Wireless Devices

Dan Goodin of Ars Technica tells the tale of a guerilla researcher who collected nine terabytes of data from a scan of 420 million IPv4 addresses across the world. “The vast majority of all unprotected devices are consumer routers or set-top boxes which can be found in groups of thousands of devices,” wrote the anonymous researcher in his 5,000-word report. “A lot of devices and services we have seen during our research should never be connected to the public Internet at all.”

Hackers can do a lot of damage, and with billions of IoT devices forecast to be connected in the next few years, embedded devices security should be more than an afterthought.

In 2015, two white hat hackers demonstrated that they could break into late model Chrysler vehicles through the installed UConnect, an internet-connected feature that controls navigation, entertainment, phone service, and Wi-Fi.

By rewriting firmware on a chip in an electronic control unit (ECU) of a Jeep Cherokee, they were able to use the vehicle’s controller area network (CAN) to remotely play with the radio, windshield wipers, and air conditioning — even kill the engine.

The cybersecurity risks are real.  Alan Grau writes on the IEEE Spectrum website about three significant incidents affecting the health care industry. A report by TrapX Labs called “Anatomy of an Attack–Medical Device Hijack (MEDJACK)” describes how hackers were able to target medical devices to gain entry to hospital networks and transmit captured data to locations in Europe and Asia. “Stopping these attacks will require a change of mindset by everyone involved in using and developing medical devices,” says Grau.

Another notorious embedded wireless devices security intrusion is described in an article on The Verge, “Somebody’s watching: how a simple exploit lets strangers tap into private security cameras” . Strangers were able to watch live streams of unwitting security camera owners within their homes. The vulnerabilities of existing firmware allowed for egregious invasion of privacy.

Embedded Wireless Devices and IoT Vulnerabilities

Many of the hackable embedded wireless devices now on the market were created without much consideration for security. “Security needs to be architected from the beginning and cannot be made an option,” says Mike Muller, CTO of ARM Semiconductors, at a seminar he gave at the IoT Security Summit 2015.  Muller believes that very few developers have any real understanding of security. ·“We cannot take all of the software community and turn them into security experts.  It’s not going to work.” The answer is that best practices for embedded security must be established and followed. That includes splitting memory into “private critical and private uncritical” and creating device-specific encryption keys. “You have to build systems on the assumption that you’re going to get hacked,” warns Muller.

Identifying potential IoT vulnerabilities requires robust testing before putting devices into production. In 2014, the Open Web Application Security Project (OWASP) published a list called Internet of Things Top Ten:  A Complete IoT Review. They recommend testing your IoT device for:  

  1. Insecure Web Interface (OWASP I1)
  2. Poor Authentication/Authorization (OWASP I2)
  3. Insecure Network Services (OWASP I3)
  4. Lack of Transport Encryption (OWASP I4)
  5. Privacy Concerns (OWASP I5)
  6. Insecure Cloud Interface (OWASP I6)
  7. Insufficient Security Configurability (OWASP I8)
  8. Insecure Software/Firmware (OWASP I9)
  9. Poor Physical Security (OWASP I10)

As with any testing, well-written test cases will help manufacturers ensure the security of the device. Better to run through possible scenarios in the lab that to have major issues with customers later.   In November 2016, Dan Goodin of Ars Technica reported that a “New, more-powerful IoT botnet infects 3,500 devices in 5 days”. Goodin writes that “Linux/IRCTelnet is likely only the beginning of what could be a long line of next-generation malware that steadily improves its capabilities.” And he laments the defenselessness of IoT devices that proliferate across the web. It’s a sentiment that’s shared by many.

What about your experiences with IoT security and embedded wireless devices? Any stories to tell? What are your recommendations for making things safer? Feel free to post your comments here.

 

LTE and 5G compete or compliment IoT networks?

LTE and 5G compete or compliment IoT networks?

LTE and 5G compete or compliment IoT networks?

Curious – can LTE and 5G compete or compliment IoT networks or the other way around? The big cellular companies have heavily invested in Long-Term Evolution (LTE) networks and the coming 5G network. They are saying it can compete with the Internet of Things (IoT) network that smaller companies are putting their bets on.

“Despite the prospect of new networks that reach farther than cells and let IoT devices communicate for years on one battery charge, many of the power-sipping networked objects to be deployed in the coming years will use LTE and future 5G cellular systems,” reports Stephen Lawson in Computerworld.  Lawson’s article depends largely on information from the LTE and 5G network developers..

ZDNet took a look at IoT investments stating that “Investors in Sigfox’s  fund raising included major cellular network operators NTT Docomo, SK Telecom, and Telefonica, so it seems that some at least are hedging their bets,” wrote Stuart Corner.

Verizon has not made that kind of investment, but it is investing in its own IoT tech. Looking at the Category M1 tech Verizon is working on, it’s hard to see major differences between that and the IoT networks under development, and in place, by the LORA Alliance, Sigfox and others. Cat M1 runs on a 1.4mhz bandwidth with speeds capped at one meg a second. It promises to come in under $10 for consumers.

Verizon is saying LTE and 5G compete or compliment IoT networks and in fact they will exist together. Rosemary McNally, Verizon’s VP for mobile devices and operating system technology, told RCR Wireless that “the Cat M1 network they have in mind will run on the LTE. It will offer more security than IoT”, she promises.

So the question needs to be reframed. Instead of asking if the two networks can compete, ask instead do LTE and 5G have to compete on the same grounds as IoT? No, because they don’t have to.

Will LTE and 5G compete or compliment IoT networks?

The IIoT and 5G merge in places like over-the-road shipping. IIoT sensors inside the truck feed data into the 5G and LTE networks, which hand it over to controllers and monitors. Decisions can be made within minutes.

The agriculture industry is also using the IoT. Modern tractors are embedded with sensors that provide regular feedback to the manufacturer. A farmer in South Georgia recently got a call from the tractor dealership. The sales rep said he’d received a message that whoever was driving one of the farm’s tractors was “riding the clutch.” Riding the clutch can cause it burn out, a costly repair. By having IoT in the tractor, the maker was able to monitor use and save the owner money.

Another reason LTE and 5G compete or compliment IoT networks is radio frequencies. The Verizon Cat M1 is going to run on licensed bands. Once those bands hit maximum transmission traffic, Verizon is either going to have to get new bandwidth, which can run to the millions of dollars, or scale back some traffic.  If that happens, will Verizon continue to support Cat M1, which appears to have low profit margins? Or, will the company discontinue its IoT investments?

Where 5G and LTE have an advantage is security. Current IoT is running on unlicensed spectrum. Anyone can use it. Turf wars may erupt. Two companies next to each other decide to use the same frequency for their IoT. The signals interfere with each other, causing minor to major problems. With licensed frequencies, this is not a problem.

So can LTE and 5G compete or compliment 5G and LTE complement Iot networks?  In truth they compliment each other. Each has strengths and each has weaknesses. Using each system’s strong points to cover the other’s weak points will create a much stronger network than either could be independently.

WHAT THE FUTURE HOLDS

Doug Brake takes a long and hard look at IoT, 5G, LTE and nextgen wireless in a report for the Information Technology and Innovation Foundation.  The industry has gone from 1G (analog) in the 80s to 2G, 3G and now 4G in the past few years. He points out the industry goes through a major upgrade every 10 years. Each upgrade has required big investments. With 2020 a short four years away and 5G already being discussed, AT&T, Sprint and the rest are planning major investments to upgrade the wireless network. The smart ones are planning upgrades that allow IoT.

Can LTE and 5G compete or compliment IoT networks?

The questions that should be asked are:  

  • How can IoT be merged into higher-speed transmissions to let on-site and remote operators make better decisions? SugarCreek is one example of how this merger works. Modern tractors are another.
  • What will be the standard? IoT must have a standard just as smartphones do today. A Verizon phone can call, SMS, MMS and so forth to an AT&T phone. Consumers will demand the same for IoT. A homeowner will buy a fridge from General Electric, get an HVAC from Trane and a home entertainment system from Crutchfield. He will demand all the systems function seamlessly on the same IoT network. The IIoT is making inroads on standards, but much more work needs to be done. Equipment needs to move seamlessly from plant to plant. Just installing the hardware is expensive enough. The wireless controls should be plug and play.
  • Is a frequency “land grab” ahead as regulators look at the unlicensed frequencies and increasing demand for them? How much is needed?
  • What kind of security protocols are needed? Yes, it may take a day to hack into a microwave, but someone is going to do it. That’s an annoyance. Hacking into the smokers at SugarCreek could shut down production for a day or more and cost the company plenty. How can this be stopped? Since IoT is going to be largely low-speed, small data, could each device have a limiter? Perhaps once a certain amount of data is sent, the device takes an action to alert the owner or disconnection from the IoT.

Will LTE and 5G compete or compliment IoT network

Have a Key senior executive or functional leadership role you need to fill?

Consider the affordable retained search team of NextGen.  Known for “discovering the diamond in the rough”, we have successfully identified and recruited the top 14% of the wireless workforce – the “A players” who produce 8 to 10 times more than even “B players”.   Check out an example of wireless recruitment case studies and client testimonials to discover why clients say “NextGen delivers candidates who not only meet, but exceed our expectations”.

 

Self Organizing Networks drives down Mobile HetNet cost

Self Organizing Networks drives down Mobile HetNet cost

Self Organizing Networks drive down Mobile HetNet Cost

As technology continues to advance, Self organizing networks drive down mobile Hetnets cost.  Known as SON, it has promise for the large cellular carriers that run LTE but additionally for smaller networks running on Wi-Fi and femtocells.  The goal of all carriers is to lower their overall operating costs and increase cost effectiveness.  Should SON use HetNet (heterogeneous networks), there are some advantages and disadvantages.  This article will look at each side.

Self Organizing Networks Advantages

The innate autonomous SON can function without users.  This means base stations and access points are configured and optimized automatically.  Macrocells still require technical interface, but the advent of self organizing networks within combination of small-cell technology meant a powerful shift in resource management – there was no reason to send a technician to each new small cell in a selected market area.

Ultimately, and the technology is still in its infancy if not even created, is to have the Self organizing networks implemented in the RAN.  The autonomous nature of SON means no human intervention for organizing and optimizing.  All a carrier would need is to create the cell site.

The SON would handle all the RF frequencies and their channels, determine power levels, lists of neighboring elements and the other necessary configurations which historically required input.

In a sample case: a cell site within a SON-capable network goes down in an act of nature or accident.  The sites around the downed cell immediately and automatically organize themselves to provide coverage for the affected area.

This gives carriers time to make logistical decisions or wait until normal working hours to dispatch technician for repairs.

Clearly, the self-operating and repairing functions of the self organizing network have clear profitability for carriers.  This includes the larger service carriers and smaller ones who depend on communication besides LTE.

Self organizing Network Disadvantages

While the innate abilities of the self organizing networks to make the necessary reconfigurations to neighboring cells, the surrounding network within the down cell’s immediate area may prove difficult because of the SON’s sensing abilities.  There are two potential scenarios: a SON-capable base station passively finds and configures, or the information can come from queries around neighboring stations.

self organizing networks for HetNet

Here is the fundamental issue.  Base stations are uplink only; they receive transmissions from the carriers to the network, but stations additionally must be able to receive downlink signals for levels and neighboring parameters.  This means SON-capable stations must be frequency-agile for both links.  Receivers, set only for dedicated downlink and time-division-duplexed, TDD, systems, mean a SON-capable station will require time when it can receive downlink transmissions, a situation that can lead to unintended additional downtime during the process.

The disadvantages are not as harsh as they may seem.  So long as the SON is a part of a HETNET, the cost can be kept to a minimal amount.  Here is how.

The HETNET is a web of base stations and wireless, up to and including macro stations, small cells, the preferred element of SON, and Wi-Fi.  The largest cellular carriers use HETNET in large, metropolitan areas (think New York, Los Angeles, Chicago, etc.) because of the user saturation macro base stations are grossly ineffective.

However, the needs of the many mean all markets, even smaller, rural ones, will eventually have a need for HETNET.  This means all the intricacies become of critical need for carriers in all markets and networks.

This is where self organizing networks is so important.  It is one technology that will meld the small and macrocells while providing a superior user experience for the carriers and their customers.  Expect the SON to evolve dramatically in the coming years.

Some major U.S. carriers have plans to expand from 100,000 active sites to over 500,000.  This massive growth will require SON with the HETNET.

Initial upfront costs are a concern for some smaller carriers, but the long-term savings on technicians more than offsets the initial investment.  It should go without saying the profit margins will take a dip on the front end but will rapidly recover as self organizing networks saturation increases.  Success will depend on all the previous factors and full implementation with proper logistical planning.

Based on this, what is your opinion?  Is the potential upfront cost and dip in profits advantageous in the overall scope of the business or is the on-call skilled technician a safer and more dependable alternative?  Certain factors certainly must be considered on both, but exactly what are those factors outside of forces of nature?  Feel free to provide your personal thoughts on this.

Need an experienced executive search consultant?

Call Charles Moore of nextGen – the original wireless recruiter.  with almost 30 years of experience in cellular technology beginning with analog phones through PCS auctions, 2G to 4G, IoT , 5G and beyond, Charles’ team has recruited hundreds of wireless professionals ranging from CEO to Principal in sales, business  development, RF engineering, RFIC, and cyber wireless for MNOs, infrastructure manufacturers, DAS and iBS developers, RFIC and embedded wireless   Click the image below and contact Charles today.