888-501-5580 [email protected]
AI in Nanotechnology for Biomedical Usage

AI in Nanotechnology for Biomedical Usage

Ai in Nanotechnology for Biomedical Use

Nanotechnology has been slowly treading into the field of biomedicine for almost a decade now. Owing to the fact that nanotechnology for biomedical usage is still a relatively newer technology surrounded by many ethical debates, its footsteps are a little slow and careful. So what is nanotechnology? As the name would suggest, it is the putting of nanotechnology to medicinal usage and that is where aI – aka artificial intelligence comes to light.

You can put about a thousand nano-particles side by side in the cross-section of a singular hair and disseminate them into the bloodstream to be in motion with the same fluidity as a red blood cell.  Many biomedical scientists and researchers have managed to apply nanotechnology productively. In 2016, a DNA nanorobot was created for targeted drug delivery in cancerous cells. The National Center for Nanoscience and Technology, Beijing, China recently created a bactericidal nanoparticle that carried an antibiotic and successfully suppressed a bacterial infection in mice.

However, the most remarkable innovation in this field was in 2017, when biomedical engineers designed and created small-scale locomotive robots mimicking the structure, mobility, and durability of red-blood cells. These nanobots developed by AI architects exhibit the ability to swim, climb, roll, walk, jump over and crawl in between the liquid or solid terrains inside the human body. Scientists expect that with the creation of these nanobots, they will be able to freely circulate around the body, diagnose malfunctions, deliver drugs to the disease, and report back by lighting up while performing their drug delivery.

As amazing as that may sound, many find it equally as invasive; hence the ethical debates surrounding nanomedicine.  However, taking a completely neutral stance, we will try to give the readers a brief overview of what Ai in nanotechnology for biomedical usage is all about, what strides it has made and where it stands currently.

​​​​Ai in NanoTechnology for Biomedical Usage Methods

Owing to these characteristics, nano-particles have found their effective uses in the medicinal field. Some of these Ai in nanotechnology for biomedical usage methods include the following:

  1. Targeted drug delivery and consequentially minimal side-effects of treatments.
  2. Tissue regeneration and replacement, for example, implanting coatings, regenerating tissue scaffolds, repairing bones via structural implantation
  3. Implanting diagnostic and assessment devices, nano-imaging, nano-pores, artificial binding sites, quantum dots etc.
  4. Implanting aid like retina or cochlear implants
  5. Non-invasive surgical nano-bots

This involves nano-particles that are constructed of immune-system-friendly materials, implanted with drugs and sent to the targeted areas of the body. Owing to their small size, they can effectively target only the areas that are disease-ridden; dysfunctional parts of the cells as opposed to the entire cells, or whole organs. This essentially means minimal side-effects because it lowers healthy cell damage.

This can be demonstrated by the example of NCNST creating nano-robots that carried a blood-coagulating enzyme called Thrombin. These thrombin-carrying nano-particles were then sent to tumor cells, essentially cutting off tumor blood supply. Another example of drug delivery using nanoparticles is of CytImmune, a leading diagnostic company that used nanotechnology for precision-based delivery of chemotherapy drugs – it published the results of their first clinical trials, while the second one is underway. Many such methods of drug delivery are being used for cancer, heart diseases, mental diseases and even aging. 

Regenerative Ai in NanoTechnology for Biomedical

As per the National Institutes of Health, the procedure encompassing regenerative involves “creating live, practicable tissues to repair or replace tissues or organ functions lost because of a slew of reasons, which may be chronic disease, increasing age or congenital defects.”

Just as nano-bots mimic the structure of red blood cells, they can mimic the function of auto-immune cells and antibodies in order to aid the natural healing process. Because the natural cellular interaction takes place at a micro-scale level, nanotechnology can make its uses known in multiple different ways. Some of these include regeneration of bone, skin, teeth, eye-tissue, nerve cells and cartilages.  Ai is able to collect and direct and modify regenerations. 

You can read about the Ai in nanotechnology for biomedical usage based cell repair by in the following article; The Ideal Gene Delivery Vector: Chromalloytes, Cell Repair Nanorobots for Chromosome Repair Therapy.  While such a powerful and innovative technology has its innumerable advantages in the medical field, it must be used within certain ethical perimeters for long-term applicability. Nano-technology brings with it many risks that need to be kept in mind by researchers.  If you need help to identify and recruit senior executives or functional leaders in advanced medical devices, electronic health records, biopharma, or artificial intelligence technology, consider the experienced team at NextGen Global Executive Search. 

Need an experienced recruiter with Medical Nanotechnology expertise?

With over 23 years recruiting for medical device manufacturers, biomedical research and development, Ai development, medical devices semiconductor vendors, NextGen Global Executive search has served clients worldwide to identify and recruit “A players:” who can meet or exceed your objectives in senior management, functional leadership, and key sales, engineering, product management roles.  Click below to contact us today.

 

IoT Medical Devices Security Vulnerabilities on Wi-Fi Networks

IoT Medical Devices Security Vulnerabilities on Wi-Fi Networks

IoT Medical Devices Security Vulnerabilities  on Wi-Fi Networks

IoT medical devices security vulnerabilities affects many different types of in-hospital equipment including diagnostic equipment (e.g., MRI (Magnetic Resonance Imaging) machines and CT (Computerized axial Tomography) scanners), therapeutic equipment (e.g., infusion pumps and medical lasers) life support equipment (e.g., heart support machines), internet-connected devices for monitoring patients vital signs (e.g., thermometers, glucometers, blood pressure cuffs, wearables), as well as novel, intelligent and disruptive devices which can keep track of medication schedules (e.g., GlowCap outlets and AdhereTech wireless pills).

The Internet-of-Things (IoT) is gradually realizing a radical transformation of healthcare services based on the deployment of numerous medical devices, which already represent a considerable segment of the billions of internet-connected devices that are nowadays available.

These devices are used in conjunction with mobile terminals (e.g., tablet computers, smart phones) which enable health professionals both to configure them and to visualize their data. Moreover, several IoT applications integrate RFID tags, as a means of uniquely identifying and associating with each other devices, patients, doctors, drugs, prescriptions and other artifacts engaging in the care service provisioning process. While several of the above listed devices can be deployed in the patients’ homes, the majority of them are deployed in the hospital environment.

In principle, IoT technologies enable the processing of data and the orchestration of services from all these devices in order to facilitate health professionals to access accurate and timely information about the patients’ status, but also to configure disease management processes for prognosis, diagnosis and treatment. Beyond disease management, the deployment of IoT medical devices security in the hospital can be also used to boost the efficiency of hospital operations.

As a prominent example, the continuous monitoring of IoT medical devices security can serve as basis for reducing their downtime. Likewise, devices emit notifications that can trigger proactive maintenance and replenishment of supplies. Furthermore, information from medical devices can be exploited in order to optimize resources utilization and patient scheduling. Based on these processes, healthcare will become a setting that will annually contribute over $1 trillion to IoT’s business value by 2030, as projected by a recent report of McKinsey Global Institute.

IoT Medical Devices Security Risks

The expanded use of IoT medical devices in hospitals raises serious privacy and security challenges, given the proclaimed and widespread vulnerabilities of wireless devices. IoT medical devices security vulnerabilities has always been a concern for applications, but in the case of healthcare it is a matter of life and death. Indeed, beyond compromising patient’s data confidentiality, security vulnerabilities can have life-threatening implications, as IoT devices are used to control medication or even to drive surgical interventions and other therapeutic processes.

Since commands to several devices are transmitted wirelessly, hackers can invade the wireless network in order to gain control over devices and transmit unauthorized commands with fatal results. For instance, a malicious attack against an insulin pump can lead to a wrong dose to a diabetes patient. As another example, the hacking of an electrical cardioversion device could instigate an unnecessary shock to a patient.

There is a host of different IoT medical devices security vulnerabilities  easily include a non exhaustive list of common attacks includes:

  • Password hacking: It is quite common for medical devices to be protected by weak passwords that can be hacked. This is the case when the built-in passwords provided by the device vendors are maintained.

Hackers can easily discover such passwords in order to gain access to device configuration information. Moreover, in several cases, hackers are also able to control the device and use it to launch more advanced attacks.

Poor Security Patching: Some medical devices are poorly patched, either because some patch has not yet been deployed on the device or because the device runs an “old” operating system (e.g., an older version of Windows or Linux). Poorly patched devices are vulnerable to malware and other attacks, which makes them an easy target for hackers.

Wi-Fi: The weak link in IoT Medical Devices Security Vulnerabilities 

Denial of service attacks: Medical devices are usually lightweight and resource constrained, which makes them susceptible to denial of service attacks. The transmission of simultaneous requests to the device can cause it to stop, disconnect from the network or even become out of order.

 Unencrypted data transmission: It’s quite usual for attackers to monitor the network in order to eavesdrop and steal passwords. The transmission of unencrypted data can therefore ease their efforts to gain access to the device in order either to extract information or even exploit the device for transmitting malicious commands.

IoT medical devices security is serious business, as most of the medical devices are Wi-Fi enabled, which renders Wi-Fi the technology that carries the vast majority of the traffic that is exchanged between medical devices. However, Wi-Fi networks are conspicuously associated with IoT Medical Devices security vulnerabilities , which make them the weak link.  For example, the WEP (Wireless Encryption Password) mechanisms that empower Wi-Fi security are weak, as WEP passwords can be easily stolen.

This can accordingly enable hackers to launch attacks based on the sniffing of unencrypted traffic. In order to alleviate WEP problems, IEEE and the Wi-Fi community have specified and implemented Wi-Fi standards and protocols (e.g., WPA2, WPA2-PSK (TKIP/AES)) with much stronger encryption capabilities. Nevertheless, not all IoT medical devices security vendors provide proper support for these standards, putting the operation of devices and their interoperability with others at risk.

In recent years, special emphasis has been given in producing standards and best practices for securing wireless medical devices, on the basis of the implementation of appropriate authentication and encryption mechanisms for IoT medical devices security.

This has led to the specification of IEEE 802.1X, which is a ratified IEEE standard for network access control. 802.1X is flexible and supports a variety of Extensible Authentication Protocol (EAP), including EAP with Transport Layer Security (EAP-TLS) and Advanced Encryption Standard (AES) encryption. The latter provides two-way authentication between devices based on the installation and use of X.509 certificates.

IoT medical devices security challenges

Alleviating IoT Medical Devices Security Vulnerabilities 

 

The vision of IoT enabled hospital care cannot be realized without very strong security. CIOs and IT managers of healthcare services providers cannot therefore afford to treat security investments with caution, in an effort to reduce budgets which could ignoring low-probability risks.

Rather, they should adopt a holistic approach to IoT medical devices security and their operation, spanning technology, processes and security policy aspects.

At the technological forefront, latest Wi-Fi technologies offering strong security and encryption features should be deployed and tested.

This may involve purchasing technologically advanced equipment and testing it in terms of IoT medical devices security features, configuration problems, wireless stability and more. There is also a need for medical engineering processes in order to ensure that IoT-enabled process provide high security levels.

IoT medical devices security vulnerabilities is particularly important in the case of the trending BYOD (Bring Your Own Device) services, which involve the deployment and use of third-party devices as part of healthcare processes.

Moreover, as part of the holistic security approach, hospitals must tweak their security policies in order to keep up with IoT-related technological developments.

The right technology, the proper processes and an IoT-aligned security policy provide a sound basis for hospitals to adhere to security and privacy regulations, to avoid relevant liabilities and ultimate to maximize returns on their IoT investments.

Next Generation of IoT Medical Devices Cyber Security Recruitment

The NextGen Executive Search cyber security team is intimately familiar with the newest IoT medical devices security over WiFi networks. We identify and develop candidates so that in the shortlist we deliver to clients those who not only meet, but exceed your expectations. We target only “A players” who produce 8 to 10 times more than “B players, backed by an industry leading 12 to 36 month replacement guarantee. For more information on recruiting cyber security professionals for in-hospital medical devices using ioT device and data network connections, speak with the cyber security practice lead, click on the image below.

 

IoT Medical Devices Transforming Healthcare with Implants and Wearables

IoT Medical Devices Transforming Healthcare with Implants and Wearables

IoT Medical Devices Transforming  Healthcare

IoT medical devices transforming healthcare by changing every aspect of our social and professional lives as billions of pervasive devices enable the acquisition of timely and accurate information about our personal context, the data gathering transforms what doctors can do with actionable knowledge.

The healthcare sector provides an excellent example of the way in which the future billions of IoT devices will introduce disruptive transformation and new paradigms. In an era where population is aging and incidents of chronic diseases are proliferating, healthcare solution providers are increasingly looking into internet connected devices for remote monitoring of elderly and patients’ conditions.

This remote monitoring facilitates preemptive medical interventions, while at the same time increasing the patients’ independence, reducing hospitalization needs and alleviating pressures on the healthcare system.

One of the most prominent classes of IoT Medical Devices transforming healthcare today is wearable devices, which are personalized and provide rich and real-time information about an individual’s healthcare related context, such as heart rates, activity patterns, blood pressure or adherence to medication schedules.

Wearable devices play an instrumental role in monitoring patients’ diseases and recovery state, as well as adherence to prescribed practices and medication. A large number of relevant wearable devices are already available in the market such as activity trackers, smartwatches (e.g., Apple or Garmin Watches), pedometers, sleep apnea detector and smart pills (e.g., AdhereTech’s smart wireless pill bottle).

Implant IoT Medical Devices Transforming Healthcare

A less widely known class of wearable IoT medical devices transforming healthcare are implant devices, i.e. devices that are placed inside or on the surface of the human body. The concept of such devices has been around for several years prior to the rise of the IoT paradigm, as prosthetics that were destined to replace missing body parts or even to provide support to organs and tissues.

Therefore, implants were typically made from skin, bone and other body tissues, or from materials (e.g., metal, plastic or ceramic materials). While the distinguishing line between conventional IoT medical devices and wearable / implant devices can sometimes be blurred, we consider as implant medical devices those attached to the skin or placed inside the human body, instead of devices simply worn by the patient.

Impressive examples of implant devices are: (i) Brain implant devices (i.e. electrodes along with a battery empowered devices) used to manipulate the brain and alleviate chronic pain, depression or even schizophrenia; (ii) Electronic chips implanted at the back of the retina in the eye, in order to help sight restoration.

With the advent of IoT medical devices transforming healthcare, implant devices can also become connected and deliver information to cloud computing infrastructures and other applications. In this way, they can become part of the IoT infrastructure and enable the transmission of medical data from the patient to the practitioner on a regular basis. Moreover, with IoT implants patients no longer need to visit their doctor in order download data from their device or even in order to configure the operation of the implant device.

For example, by enhancing devices such as the electronic chip for vision restoration (outlined above) with a small handheld wireless power supply, one can adjust the sensitivity, contrast and frequency as needed in order to yield optimal performance of the device for different environmental settings (e.g., lighting conditions).

Risks and Challenges with IoT Medical Devices Transforming Healthcare

Despite their benefits, the adoption of implant IoT medical devices is still in its infancy. One of the main reasons is that the development and deployment of implants is associated with several challenges and risks.  In particular, implants are associated with surgical risks concerning their placement and removal processes. Although generally safe, these processes could lead to infections or even implant failures, which makes patients reluctant to adopt them. Moreover, several patients have reported allergies and reactions to the materials comprising the implant devices.

Beyond these adoption challenges, there are also IoT technological challenges associated with the need to understand and optimize the placement and operation of the device. For example, there is a need to optimize radio communications between the implanted device and the receiving devices where the information of the implant is destined.

In this respect, low power operation is very important as a result of the need to economize on power capacity, while at the same time complying with applicable laws and regulations, including security and safety regulations.

From a technology viewpoint, implant solutions have to resolve trade-offs associated with efficiency and accuracy against antenna size, power use, operating bandwidth and materials costs. Moreover, implant devices should be appropriate for various body and skin morphologies, while at the same time offering security and data protection features that render them immune to malicious parties that may attempt to compromise their operation.

The above-listed factors render the design of cost-effective implants that adhere to regulations and optimize their operation very challenging. In order to alleviate these challenges, vendors and integrators of IoT implants resort to simulation. Simulation is an ideal tool for modelling the operation of the device and understanding its communication with the body and other devices of the surrounding environment such as gateways or even other implant devices.

Furthermore, vendors are implementing services that aim at increasing the operational efficiency of the devices, such as preventive or predictive maintenance of the device, as well as remote diagnostics and software upgrades (e.g., remote patching).

The last batch of challenges concerns the important business issues with IoT medical devices transforming healthcare, especially implants, which are not confined to selling devices. Rather, it is about innovating digitally and offering a whole range of services as part of the device’s industry ecosystem. Specifically, vendors and integrators of IoT implants need to find novel ways and business models for sharing their data with healthcare services providers and other stakeholders, while at the same time creating new value chains in collaboration with other device vendors, health professionals, home care services providers and other business actors.

The evolution of IoT medical devices transforming healthcare with implants will gradually signal a shift from the offering of an optimal IoT device to the offering of a pool of optimized and personalized healthcare services that will be built by the device’s industry ecosystem. Implant IoT medical devices are here and expected to play a significant role in the on-going IoT-driven transformation of the healthcare landscape. Stay tuned!

Need help recruiting a functional leader in IoT data, devices, or networks for medical devices?  We recruit strictly “A players” in sales, business development, product marketing, software development, RF and hardware design.  Click on the link below to discover what NextGen can do and how to contact us today.